AI & Computer Vision for Bioinformatics: Learn to build GANs

AI & Computer Vision for Bioinformatics: Learn to build GANs

What you’ll learn

  • Learn to model Artificial Intelligence using GANs: AlexNet, Inception to ResNet architectures for Computer Vision and Bioinformatics
  • Implementations of Transfer Learning and GANs in AlexNet, Inception & ResNet for various real life AI centric applications
  • How to build and implement leading AI architectures in Keras and TensorFlow Quantum with emphasis on medical computer vision
  • TensorFlow Quantum for training and testing of Hybrid Quantum Neural Networks for Computer Vision in Healthcare(Python)
  • Applied Artificial Intelligence: Concept to diverse practical implications
  • Applied AI nurturing healthcare: Code Examples using Python programming
  • 20+ Coding Exercises and Solutions in Open CV for Computer Vision

Requirements

  • No programming experience needed. You will learn everything you need to know

Description

AI is an enabler in transforming diverse realms by exploiting deep learning architectures.

Extra day to save. Get courses for up to 85% off today

The course aims to expose students to cutting-edge algorithms, techniques, and codes related to AIĀ and particularly the deep learning routines. This course encompasses multidimensional implementations on the themes listed below;

1. Deep Learning: A subset of Hybrid Artificial Intelligence

2. Big Data is Fueling Applied AI.

3. How to model a problem in AI using datasets in Python (Keras & TensorFlow Libraries).

New possibilities. Online courses up to 40% off

4. Data Augmentation in Hybrid Deep Learning Networks.

5. How to use Transfer Learning in Hybrid Deep Learning Networks.

6. How to use transfer learning in multiclass classification healthcare problems.

6. Backward Propagation and Optimization of hyper- parameters in AI.

7. Leading Convolutional Neural Networks (ALEXNET & INCEPTION) and validation indices.

8. Recurrent Neural Networks extending to Long Short Term Memory.

9. An understanding of Green AI.

10. Implementations of Neural Networks in Keras and Pytorch and introduction to Quantum Machine Learning.

11. Algorithms related to Quantum Machine Learning in TensorFlow Quantum and Qiskit.

12. AI based solutions for Neurological Diseases using Deep Learning.

13. AI for Brain Computer Interfacing and Neuromodulation.

14, AI algorithms for diagnosis, prognosis and treatment plans for Tumors.

15. How to model an AI problem in Healthcare.

16. AIĀ in Block Chain and Crypto mining

17 AIĀ in Crypto trading.

18. Forks in Block Chain via AI.

19. Investment Strategies in Crypto- trade using AI (Fungible and Non- Fungible Digital Currencies).

24. Artificial Intelligence in Robotics- A case example with complete code.

25. Artificial Intelligence in Smart Chatbots- A case example with complete code.

26. Impact of AI in business analytics- A case example with complete code.

27. AI in media and creative industries- A case example with complete code.

28. AI based advertisements for maximum clicks- A case example with complete code.

29. AI for the detection of Misinformation Detection.

30. Extraction of Fashion Trends using AI.

31. AIĀ for emotion detections during Covid- 19.

Who this course is for:

  • Beginner students curious about learning concepts of artificial intelligence and deep learning in python
  • Academic and Research Students working in the realm machine learning, deep neural networks and artificial intelligence
AI & Computer Vision for Bioinformatics: Learn to build GANs
Artificial Intelligence in Computer Vision, Healthcare, NLP and analytics applications: 25+ Coding Exercise & Solutions
$0 $84.99

We will be happy to hear your thoughts

Leave a reply

Freewebcart
Logo
Reset Password
Compare items
  • Total (0)
Compare
0
2